Mitigating Climate Change

Sources and sinks of atmospheric CO2
Emissions trading
Historical and projected CO2 emissions
Climate wedges
Alternative energy

Variable Sinks

Half the CO2 “goes away!”

- Some years almost all the fossil carbon goes into the atmosphere, some years almost none
- Interannual variability in sink activity is much greater than in fossil fuel emissions
- Sink strength is related to El Niño. Why? How?

European Climate Exchange
Futures Trading: Permits to Emit CO2

- European “cap-and-trade” market set up as described in Kyoto Protocol (http://www.europeanclimateexchange.com)
- 7/18/2008 price €25.76/ton of CO2 emitted 12/2008 = $149.73/ton of Carbon
- Supply and demand!

Ocean: 38,000 GtC (2000)
Land: 2000 GtC
Atmosphere: 775 + 4 GtC (yr-1)

"Missing" carbon is hard to find among large natural fluxes

The Global Carbon Cycle

About half the CO2 released by humans is absorbed by oceans and land
Present Value of Carbon Sinks

- Terrestrial and marine exchanges currently remove more than 4 GtC per year from the atmosphere.
- This free service provided by the planet constitutes an effective 50% emissions reduction, worth about $600 Billion per year at today’s price on the ECX.
- Carbon cycle science is currently unable to quantitatively account for:
 - The locations at which these sinks operate.
 - The mechanisms involved.
 - How long the carbon will remain stored.
 - How long the sinks will continue to operate.
 - Whether there is anything we can do to make them work better or for a longer time.

Where Has All the Carbon Gone?

- **Into the oceans**
 - Solubility pump (CO₂ very soluble in cold water, but rates are limited by slow physical mixing)
 - Biological pump (slow “rain” of organic debris)
- **Into the land**
 - CO₂ Fertilization (plants eat CO₂ ... is more better?)
 - Nutrient fertilization (N-deposition and fertilizers)
 - Land-use change (forest regrowth, fire suppression, woody encroachment ... but what about Wal-Marts?)
 - Response to changing climate (e.g., Boreal warming)

Coupled Carbon-Climate Modeling

- “Earth System” Climate Models
 - Atmospheric GCM
 - Ocean GCM with biology and chemistry
 - Land biophysics, biogeochemistry, biogeography
- Prescribe fossil fuel emissions, rather than CO₂ concentration as usually done.
- Integrate model from 1850-2100, predicting both CO₂ and climate as they evolve.
- Oceans, plants, and soils exchange CO₂ with model atmosphere.
- Climate affects ocean circulation and terrestrial biology, thus feeds back to carbon cycle.

Carbon-Climate Futures

- Friedlingstein et al (2006)
 - Coupled simulations of climate and the carbon cycle.
 - Given nearly identical human emissions, different models project dramatically different futures.
Emission Scenarios

- **A1**: Globalized, with very rapid economic growth, low population growth, rapid introduction of more efficient technologies.
- **A2**: Very heterogeneous world, with self-reliance and preservation of local identities. Fertility patterns across regions converge very slowly, resulting in high population growth.
- **A2**: Economic development is regionally oriented and per capita economic growth & technology more fragmented, slower than other storylines.
- **B1**: Convergent world with the same low population growth as in A1 but with rapid changes in economic structures toward a service and information economy, reductions in material intensity, introduction of clean and resource-efficient technologies. The emphasis is on global solutions to economic, social, and environmental sustainability, including improved equity, without additional climate initiatives.
- **B2**: Local solutions to economic, social, and environmental sustainability. Moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change than in B1 and A1.

Each “storyline” used to generate 10 different scenarios of population, technological & economic development.

Carbon intensity of the world economy fell steadily for 30 years

<table>
<thead>
<tr>
<th>Year</th>
<th>Carbon Intensity (kgC/US)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>0.34</td>
</tr>
<tr>
<td>1960</td>
<td>0.30</td>
</tr>
<tr>
<td>1970</td>
<td>0.27</td>
</tr>
<tr>
<td>1980</td>
<td>0.24</td>
</tr>
<tr>
<td>1990</td>
<td>0.21</td>
</tr>
<tr>
<td>2000</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Canadell et al. 2007

Until 2000!

<table>
<thead>
<tr>
<th>Year</th>
<th>Carbon Intensity (kgC/US)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>0.34</td>
</tr>
<tr>
<td>1960</td>
<td>0.30</td>
</tr>
<tr>
<td>1970</td>
<td>0.27</td>
</tr>
<tr>
<td>1980</td>
<td>0.24</td>
</tr>
<tr>
<td>1990</td>
<td>0.21</td>
</tr>
<tr>
<td>2000</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Canadell et al. 2007
Dramatic contrast - history versus future

Cumulative CO₂ emissions

Raupach et al. PNAS 2007
CO₂ “Budget” of the Atmosphere

- Fossil Fuel Burning: 8 billion tons go in
- 4 billion tons added every year
- 2 billion tons go out

How Far Do We Choose to Go?

- “Doubled” CO₂
- Today (800 ppm)
- Pre-Industrial (380 ppm)
- Glacial (285 ppm)
- Past, Present, and Potential Future Carbon Levels in the Atmosphere

Historical Emissions

- Billions of Tons Carbon Emitted per Year
- Historical emissions: 0-16

The “Stabilization Triangle”

- Billions of Tons Carbon Emitted per Year
- Historical emissions: 0-16
- Stabilization Triangle
- Interim Goal
What is a “Wedge”?

A “wedge” is a strategy to reduce carbon emissions that grows in 50 years from zero to 1.0 GtC/yr. The strategy has already been commercialized at scale somewhere.

Cumulatively, a wedge redirects the flow of 25 GtC in its first 50 years. This is 2.5 trillion dollars at $100/tC.

A “solution” to the CO₂ problem should provide at least one wedge.

Fifteen Wedges in 4 Categories

- Energy Efficiency & Conservation (4)
- Fuel Switching (1)
- CO₂ Capture & Storage (3)
- Renewable Fuels & Electricity (4)
- Forest and Soil Storage (2)
- Nuclear Fission (1)
Efficiency

- Double the fuel efficiency of the world's cars or halve miles traveled
- Produce today's electric capacity with double today's efficiency
- Average coal plant efficiency is 32% today
- Use best efficiency practices in all residential and commercial buildings
- Replacing all the world's incandescent bulbs with CFL's would provide 1/4 of one wedge

Sector's affected:
- E = Electricity, T = Transport, H = Heat
- Efficiency:
 - Double today's fuel efficiency

Cost based on scale of $ to $$$

Fuel Switching

- Substitute 1400 natural gas electric plants for an equal number of coal-fired facilities

Sector's affected:
- E = Electricity, T = Transport, H = Heat

Efficiency:
- Average coal plant efficiency is 32% today

Cost based on scale of $ to $$$

Carbon Capture & Storage

- Implement CCS at
 - 800 GW coal electric plants
 - 1600 GW natural gas electric plants
 - 180 coal synfuels plants
 - 10 times today's capacity of hydrogen plants

Cost based on scale of $ to $$$

There are currently three storage projects that each inject 1 million tons of CO$_2$ per year – by 2055 need 3500.

Nuclear Electricity

- Triple the world's nuclear electricity capacity by 2055

Cost based on scale of $ to $$$

The rate of installation required for a wedge from electricity is equal to the global rate of nuclear expansion from 1975-1990.
Wind Electricity

Install 1 million 2 MW windmills to replace coal-based electricity, OR
Use 2 million windmills to produce hydrogen fuel

A wedge worth of wind electricity will require increasing current capacity by a factor of 30

Solar Electricity

Install 20,000 square kilometers for dedicated use by 2054

A wedge of solar electricity would mean increasing current capacity 700 times

Remember

- Half (4 GtC/yr) of the current emissions (8 GtC/yr) remain in the atmosphere and contribute to greenhouse forcing of downward longwave radiation
- Economic growth is on track to at least double CO2 emissions to 16 GtC/yr by 2050
- Reducing CO2 emissions requires choosing a combination of efficiency, fuel switching, and alternative energy generation ("wedges")
- Each "wedge" is feasible given today's technology, but also expensive