Parameterizations of Ice Particle Size Distributions and Bulk Microphysical Properties for Cirrus and Stratiform Ice cloud Layers

Andrew Heymsfield
NCAR
Boulder, Colorado

andy, for your talk in hawaii can you include some constructive but hard-hitting criticism of the deficiencies of ice microphysics in "bulk" microphysics schemes, such as the ones currently used in most cloud-resolving models?
Outline

• PSD Parameterization Issues
 – Examine data sets

• Develop an Approach
 – Again examine data

• Results

• Summary and Conclusions
Issues (1)

• **Species**, especially ice/snow distinction

• **Ice Particle Densities**
 – Snow, 0.1 g/m3
 – Graupel, 0.3 to 0.4 g/m3
 – Hail, 0.9 g/m3

• **Terminal Velocities**
 – Pressure dependence, “spread”
Issue 2: PSD Parameterization

• **Representation of snow PSDs**
 how do we parameterization the PSDs using one moment schemes in operational forecast models
 strong sensitivity of diffusion growth to the PSD
 terminal velocity affects cloud bulk properties to a minor extent
• **Representation of graupel/hail PSDs**
 terminal velocity crucial (affects riming/LW depletion rates)
 particle density is also crucial
• **Two moment schemes to represent the PSDs**
 predict the total number concentration by species and ice mixing ratio. Are there other, better variables?
PSD Parameterization Issues

• Representation of Snow PSDs

----- Exponentials

\[N = N_0 e^{-\frac{D}{l}} \]

For Marshall Palmer,
\[N_0 = 0.08 \text{ (cgs)}, \quad l = 41R^{-0.21} \]

--- For Ice PSDs, \(R \sim V_t \times IWC \sim 100 \text{ IWC} \)

Therefore, \(N_0 \) should be constant, \(IWC^{-p} \)
N_0 for ice PSDs is therefore not constant
is loosely related to IWC
N_0 is reasonably well correlated with temperature
Typical Citation Spiral Descent
Spectral Parameters vs Temperature

$A: \lambda$ vs Temperature

\begin{align*}
\lambda \text{ (cm}^{-1}\text{)} \\
\text{Temperature (°C)}
\end{align*}

Interesting
CRYSTAL, ARM DATA SETS

Convective

Stratiform
Parameterization Development

- \(N = N_0 e^{-\Gamma D} \)
- \(\Gamma = 12.2 \times 10^{-0.0245T} \) (after Ryan) stratiform
 - separate for close to convection
- \(\text{IWC} = \left(\frac{\Gamma}{6} \right) N_0 \Pi(D) D^3 e^{-\Gamma D} dD = f(\Gamma/\bar{\Gamma}) \)
- \(R = \left(\frac{\Gamma}{6} \right) N_0 \Pi(D) V_t(D) D^3 e^{-\Gamma D} dD \)
- \(V_t(D) \) from Mitchell (1996), Heymsfield et al. (2001)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWC (\left[\frac{g}{m^3} \right])</td>
<td>(\frac{5.3 \times 10^5 N_0 r \Gamma(3.4+\mu)}{\lambda r^{(3.4+\mu)}})</td>
</tr>
<tr>
<td>Z (\left[\frac{mm^6}{m^3} \right])</td>
<td>(1.02 N_0 r \times 10^6 \Gamma(5.7+\mu))</td>
</tr>
<tr>
<td>(D_{mm}) ([cm])</td>
<td>(3.035 + \mu)</td>
</tr>
<tr>
<td>(dB Z_e) (^1)</td>
<td>(10 \log_{10} Z - 7.2)</td>
</tr>
<tr>
<td>(V_m) (\left[\frac{cm}{s} \right])</td>
<td>(\frac{303 \Gamma(3.9+\mu) \lambda r^{-0.5 \gamma}}{\Gamma(3.4+\mu)})</td>
</tr>
<tr>
<td>(V_Z) (\left[\frac{cm}{s} \right])</td>
<td>(\frac{244 \Gamma(6.3+\mu) \lambda r^{-0.5 \gamma}}{\Gamma(5.7+\mu)})</td>
</tr>
<tr>
<td>(R) ([mm/hr])</td>
<td>(\frac{5.78 \times 10^4 N_0 r \Gamma(3.9+\mu)}{\lambda r^{(3.9+\mu)}})</td>
</tr>
<tr>
<td>(A_c) (\left[\frac{cm^2}{m^3} \right])</td>
<td>(\frac{5.3 \times 10^3 N_0 r \Gamma(2.9+\mu)}{\lambda r^{(2.9+\mu)}})</td>
</tr>
<tr>
<td>(\varepsilon) ([km^{-1}])</td>
<td>(0.2 A_c)</td>
</tr>
<tr>
<td>(r_\varepsilon) ([\mu m])</td>
<td>(\frac{107 \Gamma(3.4+\mu)}{\Gamma(2.9+\mu) \lambda r^{0.4 \varepsilon}})</td>
</tr>
</tbody>
</table>
Median V_e vs. Spectral Parameters

A: Mass–Weighted Diameter

- TRMM
- FIRE(1), ARM
- FIRE(II)

V_e (cm s$^{-1}$) vs. D_m (cm)

B: Spectral Slope

V_e (cm s$^{-1}$) vs. λ (cm$^{-1}$)

- Fit (All)
- Param. (TRMM)
- Param. (Midlat.)
$V_{[P]} / V_{[1000]}$ vs. $V_{[1000hPa]}$, cm s$^{-1}$

250 hPa
$\text{Ratio} = 1 + 0.041V_m^{0.61}$

400 hPa
$\text{Ratio} = 1 + 0.034V_m^{0.54}$

500 hPa
$\text{Ratio} = 1 + 0.029V_m^{0.51}$

750 hPa
$\text{Ratio} = 1 + 0.014V_m^{0.46}$

1000 hPa
Summary and Conclusions

- Issues related to parameterizations of ice particle size distributions were examined.
- Representations of PSDs properties in terms of temperature seem promising, especially if convective situations are separated from stratiform regions.
- The slope of the PSDs, l, offer the most promise for parameterization.
- Once l is known, IWC yields the intercept parameter (two moment schemes), or a l versus N_0 relationship (one moment) can be used to specify IWC.
- Given l and N_0, many microphysical, radiative, and radar-related parameters can be derived.
- Eliminate ice/snow species distinction, consider spread of fall velocities and pressure dependence reliably.