How can we couple “traditional/true/classical/baroque/bulk” and “super” parameterizations?

Robert Pincus
NOAA-CIRES Climate Diagnostics Center
Continuing roles for traditional parameterizations

When resources are constrained:

- Long integrations (e.g. paleoclimate)
- In models with other expensive processes (e.g. chemistry)
- Ensembles

As “theories”: compact representations of our understanding

Almost all climate simulations in the next ... years will be made with traditional parameterizations
What might parameterizations look like in ten years?

Superparameterization (SP)

- Adequate resolution(s), sample size
- 2D vs. 3D issues
- Generalized (other embedded models, grids?)
- Extended vs. contained coupling

Traditional parameterizations (TP)

- Explicit treatment of sub-gridscale variability
- Correct-ish coupling between processes (more unified)
- Consistent assumptions across processes
- Perhaps some stochastic components
What’s the best we can hope for?

What can a traditional parameterization conceivably do?

Representations of sub-grid variability, and so reduced tuning

Variability about mean relationships

(More) Unified physics

Memory and organization (crudely)

What can’t a traditional parameterization possibly do?

Explicit structure (vertical, mesoscale)

Processes coupling on cloud scale

Memory (exactly)

We don’t know how much SP buys in principle
Biases associated with proper overlap of homogeneous clouds

BIAS IN RADIATIVE HEATING (0.01 K/day)

SW HEATING

LW HEATING
Using SP data sets to learn about sub-grid scale variability

We might use SP datasets to evaluate aspects of parameterizations:

- Distributions (one-point statistics)
- Arrangements/organization (correlations, i.e. overlap)
- Relationships between processes

Superparameterization datasets vs. cases studies:

- Large sample, wide range of conditions
- Consistent with large-scale dynamics (?)
- Caveat: CRM clouds have undergone limited evaluation
Increasing IWP

Cloud resolving model

Maximum overlap in total water

Random overlap in total water

Layer-to-layer rank correlation

Ice mixing ratio (g/kg)

0 0.4 0.8
SP guidance on non-unique solutions

Large-scale information may not uniquely determine process rates

Parameterizations could include random elements deliberately

Non-linearities can bite!

Might introduce temporal/spatial correlation (proxy for memory)

Parameterizations might also include random elements

“accidentally”, by using approximate solutions

Noise generally affects large-scale only when correlated

SP can help us learn about time/space correlation scales
Data underlying a "stochastic" microphysics parameterization
McFarquhar et. al, 2003
Maybe failure is where we learn the most

What if SP works but TP doesn’t?

 Cloud-scale interactions among processes?
 Poor representations of variability or organization in TP?
 Persistence/ memory?

What if TP works but SP doesn’t?

 CRM clouds have undergone limited evaluation; may have different sensitivities than TP

What if neither works?

 Some processes (microphysics, turbulence) are parameterized in both contexts; perhaps these are crucial