Cumulus ensemble simulation using a cloud resolving model: Impact of horizontal resolution

Hiroaki Miura and Masahide Kimoto
Center for Climate System Research, University of Tokyo
Application of cloud resolving models

Cloud Resolving Model (CRM)

for improvement of existing parameterization?
for super-parameterization?
for global simulation?

Some questions:
• Cloud properties
• Feedback to large-scale environment

2-D or 3-D
Horizontal & vertical resolution
Parameterizations in CRM
\[dx = 2 \text{ km} \& dx = 5 \text{ km} \]

(Radiative-convective equilibrium simulation)

Cloud Water & Rain Water [0.001 g/Kg]
Wind and Vapor Mixing Ratio (500m)

Miura and Kimoto
dx = 2 km & dx = 5 km

5km Cloud: Bigger in size & Smaller in number
Motivation

$dx = 5 \text{ km}$

Systematic difference? (in a statistical sense)

$dx = 2 \text{ km}$

Process?

Convergence?
Experimental design

• Model: MRI-NPD NHM

• Resolution: \(dx = 5 \text{ km} \) (\(dt = 20 \text{ s} \)) & \(2 \text{ km} \) (\(dt = 6 \text{ s} \))

\[dz = 40 - 1120 \text{ m} \]

• Domain Size: 150 km x 150 km x 26400 m (3-D)

• Span: 45 days (30 days to attain equilibrium & 15 days to analyze)

• SST = 300 K

• Without large scale flow

• With radiation

• output interval = 5 min

Reference: Tompkins and Craig, 1999

LSF obscures Q1 and Q2 dependencies on resolution
Cloud lifetime

Clouds ($dx = 5\ km$): Longer lifetime
Bigger in size
Smaller in number

Precipitation lifetime (case: max $> 1.0\ mm/5\ min$)
Impact on larger-scale

Time- and domain-averaged “relative humidity”

\[dx = 5\text{km}: \]

Drier in the middle to the upper troposphere
Cloud mass flux

Time-averaged “cloud mass flux” (Cloudy grid: $q_{\text{water or ice}} > 5.\text{e-3 g/kg}$)

Up & down: 2km > 5 km

Total upward:
2km < 5km
Cloud dilution

Time-averaged “cloud fraction”

Entrainment: 2km > 5km

5km < 2km

2km < 5km

Time- and domain-averaged “water mixing ratio” (in cloudy grid)

Horizontal or Vertical?
Horizontal inflow & outflow

In & out: 2km > 5km

Total: 5km ~ 2km

Horizontal convergence

Cloud fraction

Cloud dilution

2km > 5km

Time-averaged “inflow & outflow” (in: clear grids → cloudy grids)

NB: cloud expansion effect ignored
Vertical velocity

Time-averaged \(\mathbf{w} \) in convective core
\((|\mathbf{w}| > 1 \text{m/s}) \)

Upward, downward \(\mathbf{w} \): 2km > 5km

Entrainment (cloud top):
2km > 5km

Cloud fraction:

Cloud dilution:
2km > 5km

Emannuel (1994)
Heating in clear grids

Time- and domain-averaged “heating rate by advection”
(cloud free grids)
Summary

- RH (domain average): 2km > 5km (middle to upper troposphere)
- Systematic difference:
 - Coarser resolution → Weaker entrainment
 - Larger cloud mass flux (Weaker downdraft in cloudy grids)
 - Larger downward mass flux (cloud free grids)
 - Lower RH
- Convergence?
 - $dx = 2\text{km}$?
 - $dx = 1\text{km}$?

Appendix
Convective mass flux

Convective: $q > 1.0 \times 10^{-5} \ \text{g/kg} \ & \ |w| > 1 \ \text{m/s}$

Core area: $2 \ \text{km} < 5 \ \text{km}$?
Difference of mass flux

Mass Flux: Clear (5km – 2km)

Height (m)

Mass Flux (kg/m**2/s)
Equilibrium?

Heating rate
(adv + microphysics)

Moistening rate
(adv + microphysics)