Predicting global atmospheric ice nuclei distributions and their impacts on climate

Acknowledgments:
DOE-ARM (Grant No. DE-FG02-09ER64772), NASA-MAP (Grant NNG06GB60G), NASA New Investigator Program, DOE Climate Change Prediction Program, NSF (various), CIRA (CLEX-10)
Approach

Measurements
- FIELD & LAB
 - Ice nuclei
 - CCN
 - Aerosol
 - Cloud microphysics

Parameterizations
- Ice nuclei
- Homogeneous freezing
- CCN activity
 (links to aerosol size & composition)

Modeling
- Parcel model
- CRM
- Regional
- Global
Approach

Our group

- FIELD & LAB
 - Ice nuclei
 - CCN
 - Aerosol
 - Cloud microphysics

Measurements

Parameterizations

- Ice nuclei
- Homogeneous freezing
- CCN activity
 (links to aerosol size & composition)

Modeling

- Parcel model
- CRM
- Regional
- Global
Real-time atmospheric measurement of IN - Continuous flow diffusion chamber (CFDC)

Temperature controlled walls to select processing temperature

-6 < T < -40°C

inertial impactor removes particles larger than 1.5 μm

supersaturated region all aerosols activate into cloud droplets

some fraction of droplets freezes forming a mixed phase cloud

evaporation section deactivating liquid droplets

optical detection of ice crystals and impaction for chemical TEM analysis

Total residence time ~6s
IN that we measure DO represent (primary) ice concentrations in clouds

Cloud ice based on 2D-C probe > 50 µm
Ice nuclei concentrations over several projects (10-30 min. averages)

[DeMott et al., 2009]
Ice nuclei concentrations over several projects (10-30 min. averages)

[DeMott et al., 2009]
IN trend with aerosol concentrations when stratified by size and temperature

DeMott et al. (2009)
IN trend with aerosol concentrations when stratified by size and temperature

DeMott et al. (2009)
IN trend with aerosol concentrations when stratified by size and temperature

DeMott et al. (2009)
Ice nucleation parameterizations

• Meyers et al. (1992): \(n_{in} = \exp(12.96(S_i - 1) - 0.639) \)
 (no links to aerosol properties)

• Phillips et al. (2008): \(n_{IN,X} = \alpha_X H_X \left(S_{i,v}, T \right) \xi(T) \left(\frac{n_{IN,1.5,*}(T, S_{i,v})}{\Omega_{X,1.5,*}} \right) \Omega_X \)
 \(\alpha_X = f_{dust} f_{BC} f_{bio} \)
 Lab based corrections
 Scaling to “baseline” IN conc. and sfc. area

• DeMott et al. (2009): \(n_{IN,T_k} = a \left(273.16 - T_k \right)^{3.6434} \left(n_{aer,0.5} \right)^{b(T_k)} \)
 \((T, n_{aer} > 0.5 \mu m \text{ diameter}) \)
Regional impacts – Arctic stratus single column global model (SCAM3)

DeMott et al., 2009

Liu et al. 2-moment microphys. + Meyers →

As above, BUT new IN param →

[DeMott et al., 2009]
Global model (CAM3) 5-year simulations, annual averages

- Total liquid water path
- SW cloud forcing
- Total cloud cover
- Surface downwelling SW

July 2009 CMMAP Meeting Fort Collins, CO, USA
Summary

- IN measurements relate directly to first ice formation (clear from wave cloud studies, other studies where secondary ice processes can be separated) → important for predicting phase in many clouds!

- IN concentrations in mixed-phase cloud T regime can be related to the number concentrations of particles larger than ~0.5 μm → useful in models that carry some information on particle size, eventually particle type

- Global model simulation sensitivity to IN formulation is quite strong → our new parameterization yields more water clouds and less ice, especially in Arctic & midlatitude storm tracks
Future work

• For CMMAP, implement the parameterization into the SAM model
 – Case studies for different locations
 – Use of CloudSat simulator to compare with obs

• Implementation in the MMF
 – Once aerosols are included!