Variations in CERES-Terra Fluxes and Cloud Properties with SST Anomalies for Low Cloud Regions

Zachary A. Eitzen1, Kuan-Man Xu2, and Takmeng Wong2

1–Science Systems and Applications, Inc, Hampton, VA; 2–Climate Science Branch, NASA Langley Research Center, Hampton, VA

Introduction

The sign and magnitude of the changes in cloud properties for marine boundary-layer cloud regions remains one of the largest sources of uncertainty in the simulation of climate change (e.g., Bony and Dufresne 2005). In this work, we are interested in how cloud and radiative properties vary with SST anomaly in these low cloud regions, based on five years (Mar 2000 - Feb 2005) of CERES (Clouds and the Earth’s Radiant Energy System; Wielicki et al. 1996) data. Anomalies in SST and other properties are obtained by calculating the five-year mean for each month, and then subtracting this mean from the observed value. When these anomalies are regressed against another, a slope of how the property changes per degree of SST is obtained.

Thermodynamic and dynamic states

The estimated inversion strength (EIS; Wood and Bretherton, 2006) is a measure of lower-tropospheric stability that is positively correlated with low cloud cover. The vertical velocity at 500 hPa (Δz_{500}) is frequently used to classify dynamical regimes; here, we use ΔEIS instead. The values of EIS and Δz_{500} used here are from ECMWF ERA Interim reanalysis (Uppala et al. 2008). The average anomaly for each ΔEIS bin is calculated in order to see the effects of changes in thermodynamic and dynamic states on cloud and radiative properties. Most points in the low cloud regions have Δz_{500} values corresponding to weak subsidence (10-50 hPa/day), and EIS anomalies between -0.9 and +1.0 K.

Identification of low clouds

Low clouds are isolated by starting from the oceanic portion of the five boxes described by Jensen et al. (2008). Within this subset, only those months and locations which have a five-year mean middle and high cloud fraction of less than 10% are included. There are a total of 94455 observations in this set. The results do not appear to be sensitive to this choice of threshold within the range of 5–15%.

Summary

• Near the ITCZ, clouds become optically thicker (more shortwave cooling) and higher in altitude (more longwave warming) as SST increases, leading to small changes in the net cloud forcing.
• In low cloud regions, cloud cover and optical depth tend to decrease with SST anomaly.
• These changes are associated with a small decrease in longwave warming, but a substantial decrease in shortwave cooling, for a net warming effect.
• The average anomalies of cloud cover and optical depth tend to be strongly positive/negative for positive/negative EIS anomalies throughout the range of ΔEIS regimes present in these regions.
• When these average anomalies are removed, the changes in cloud and radiative properties with SST anomaly decrease in magnitude, but are still of the same sign.

References

Uppala, S., D. Dee, S. Kabat, P. Berrisford, and A. Simmons, 2008: Towards a global reanalysis data assimilation system: Status update of ERA-Interim. ECMWF Newsletter No. 115, 13–16.
