How and Why to Upgrade
Cloud Microphysics in GCMs

Richard C. J. Somerville
Sam F. Iacobellis
Scripps Institution of Oceanography
University of California, San Diego

Cloud Modeling Workshop
Fort Collins, 6-8 July 2005
Why do GCMs need comprehensive microphysics?

The old reason is still valid: cloud-radiation feedbacks are critical for modeling climate sensitivity, and microphysics has a major effect on cloud radiative properties.

Meanwhile, several newer reasons have come up:

1. **Regional** climate change can depend on cloud feedbacks.
2. **Precipitation** is an important facet of climate change.
3. **Cloud-aerosol** interactions are inherently microphysical.
4. **Numerical weather prediction** can provide synergies.
There are several key elements in this research:

We **build parameterizations** incorporating recent research on cloud microphysics.

We evaluate parameterizations against ARM observations using a **single-column model**.

We put the parameterizations in **CAM3/CCSM** and investigate their influence on the model climate.

We examine the parameterizations for their effect in NCEP **numerical weather prediction** models.

We develop and test **stochastic parameterizations** as a generalization of this approach.
SCM radiation, convection, and cloud parameterizations:
- Longwave: Mlawer et al. 1997 (ECMWF)
- Shortwave: Brieglieb 1992 (CAM3)
- Prognostic cloud: Tiedtke 1993 (ECMWF)

SCM interactive microphysics parameterizations:
- Ice fallout: Mitchell 1996, Ivanova et al. 2001
- Optical: Slingo 1989, McFarquhar et al. 2002
- Radius: Bower et al. 1994, McFarquhar 2001
SINGLE-COLUMN MODEL

Input:
- Initial profiles of T and q
- Advective fluxes of heat and moisture
- Vertical velocity

Output:
Large-Scale Variables
- Temperature, $T(t,z)$
- Humidity, $q(t,z)$
- Cloud water/ice, $qc(t,z)$

Diagnostics
- Precipitation
- Radiative Fluxes
- Cloud properties
(B) TOA SHORTWAVE CLOUD FORCING

SCM (-32)

OBS (-38)

DWSO-SCM

JULIAN DAY (2000)

WATTS M⁻²

0
-20
-40
-60
-80
-100
-120
-140

153 163 173 183 193 203 213 223 233 243

SCM (-32)

OBS (-38)
(C) OUTGOING LONGWAVE RADIATION

WATTS M⁻²

JULIAN DAY (2000)

SCM (272)
OBS (270)
(D) TOA LONGWAVE CLOUD FORCING

SCM (26)
OBS (29)

WATTS M$^{-2}$

JULIAN DAY (2000)
(E) CLOUD FRACTION

JULIAN DAY (2000)

FRACTION

SCM (0.42)
GOES (0.40)
MMCR (0.49)
Cloud Thickness
(Lowest 2km Only)

TWP APR 2001
Mean = 259m

TWP MAY 2001
Mean = 244m

Mean = 198m

Mean = 214m
Liquid Water Path

TWP APR 2001

Mean = 9.8

TWP MAY 2001

Mean = 6.9

Mean = 5.0

Mean = 6.0
Model Performance for Individual Month

Downwelling Surface Shortwave Radiation - SGP

Day 1 Forecasts vs. Observations

- SCM
 - MEAN=208
 - R=0.87
- GSM
 - MEAN=324
 - R=0.74
- OBS
 - MEAN=229

Cloud Cover - SGP

Day 1 Forecasts vs. Observations

- SCM
 - MEAN=60
 - R=0.70
- GSM
 - MEAN=17
 - R=0.96
- OBS
 - MEAN=51

Outgoing Longwave Radiation - SGP

Day 1 Forecasts vs. Observations

- SCM
 - MEAN=243
 - R=0.87
- GSM
 - MEAN=265
 - R=0.96
- OBS
 - MEAN=232
Monthly Mean Downwelling Surface Shortwave Radiation

Southern Great Plains

Tropical West Pacific

North Slope of Alaska

Month (2000-2003)
Monthly Means at ARM
Southern Great Plains Site

- **Downwelling Surface Shortwave Radiation**
- **Cloud Fraction**
- **Outgoing Longwave Radiation**

Month (2000-2003)
Daily Mean Statistics at SGP

PROBABILITY DISTRIBUTION OF DAILY MEAN VALUES AT SGP

JUN-AUG 2000-03

- Cloud Fraction
- Surface Shortwave
- OLR

SCM

GSM

OBS
Monthly Means at ARM
Tropical West Pacific Site

Downwelling Surface Shortwave Radiation

Cloud Fraction

Outgoing Longwave Radiation

Month (2000-2003)
Daily Mean Statistics at TWP

PROBABILITY DISTRIBUTION OF DAILY MEAN VALUES AT TWP

JUN-AUG 2000-02

Cloud Fraction

Surface Shortwave

OLR

SCM

GSM

OBS
Figure 9. Annual mean longwave cloud forcing from run CONTROL (top panel), EXP01 (middle panel) and ERBE data (bottom panel). Run EXP01 using the McFarquhar ice cloud parameterizations (particle radius and cloud optical properties) produces more realistic values of longwave cloud forcing in the Tropical West Pacific region.
Figure 11. Annual mean precipitable water from run CONTROL (top panel), EXP02 (middle panel) and SSM/I data (bottom panel). Run EXP02 using the Tiedtke prognostic cloud/cloud water parameterization produces more realistic values of precipitable water, particularly in the tropical Pacific and Indian Ocean regions.
Figure 12. Annual mean cloud liquid water from run CONTROL (top panel), EXP02 (middle panel) and SSM/I data (bottom panel). Run EXP02 using the Tiedtke prognostic cloud/cloud water parameterization produces more realistic values of cloud liquid water, particularly in the mid-latitude storm tracks of both the northern and southern hemispheres.
Conclusions

We have built new parameterizations with detailed cloud microphysics and evaluated them with ARM data, using a single column model.

In our single column model, the new parameterizations are more realistic than the cloud-radiation algorithms in a recent version of the NCEP operational global numerical weather prediction model.

Preliminary tests of these parameterizations in a leading GCM (CAM3) appear to confirm these results.

By using a combination of models, and testing against observations, we can diagnose causes of model errors.
Keeping the big picture in mind:

Why are we interested in cloud-climate interactions?

1. Cloud effects still dominate climate sensitivity.
2. Radiative transfer in models needs improvement.
3. Aerosol effects are especially poorly understood.

Recent research and the requirements of IPCC suggest:

A. Cloud parameterizations require new approaches.
B. To be acceptable to IPCC, models must pass tests.
C. Climate sensitivity cannot be only 1 global number.
Stochastic parameterizations: a promising approach:

GCMs usually treat cloud-radiation interactions by first predicting cloud amount in some crude way. Then they weight clear & overcast radiative transfer calculations.

Would it not be better to treat the entire problem stochastically? Why not ask the GCM to predict the probability distribution functions of cloud properties?

Such a treatment could incorporate observed statistical characteristics of cloud fields (and some cool theory).

This is what we plan to do in SCM, GCMs and (we hope) in MMAP (Lane-Veron and Somerville, JGR, 2004).
Stochastic theory of radiative transfer through generalized cloud fields

Dana E. Lane-Veron and Richard C. J. Somerville