Sub-Structure Modeling for Semi-Super-Parameterization

Alan Kerstein
Combustion Research Facility
Sandia National Laboratories
Livermore, CA

Contributors:
Wm. T. Ashurst, S. K. Krueger, V. Nilsen, J. R. Schmidt,
R. C. Schmidt, J. O. L. Wendt, S. E. Wunsch

July 7, 2005

Cloud Modeling Workshop
Outline of presentation

- Introduction to semi-super-parameterization

- Sub-structure model
 - Formulation
 - Illustrative applications

- Features of semi-super-parameterization
Super-parameterization combines two conventional CFD cost-reduction methods

Coarse graining:

Reduced dimensionality:

computational mesh

mesh needed to resolve all physics
Strategy: Use the mesh dimension best suited for each range of scales

Large-scale advection is inherently 3D, but lower dimensionality can suffice at smaller scales, e.g.:

- 2D cloud-resolving model within a GCM: super-parameterization
- 1D model within a coarse-grained 3D simulation: semi-super-parameterization

Schematic of semi-super-parameterization:

1D substructure in each coordinate direction

Semi-super-parameterization is suitable for:

- Combustion
- Boundary layers
- Dry convection
- Cloud mixing/microphysics
- Stratocumulus?
Ideally, this can be implemented as autonomous flow advancement

Semi-super-parameterization concept:

- 1D resolution scale (small time step):
 - Substructures in each coordinate direction evolve independently

- 3D resolution scale (large time step):
 - Substructures in each direction interact by property fluxes
 - Substructures in the other directions determine those fluxes
 - This coupling communicates 3D effects to the 1D substructures

The flow state is entirely represented within substructures; spatial filtering of flow variables is done only for output

Current implementation: A related but distinct formulation
(Rod Schmidt’s presentation)

As in super-parameterization, there are many possible formulations
Outline of presentation

● Introduction to semi-super-parameterization

● Sub-structure model
 – Formulation
 – Illustrative applications

● Features of semi-super-parameterization
Flow evolution within substructures is modeled using *One-Dimensional Turbulence (ODT)*

A one-dimensional model emulating 3D turbulence, including turbulence-microphysics interactions, has been developed and extensively demonstrated.

- It combines two well-known 1D approaches:
 - *The 1D boundary-layer formulation* of the equations of motion, with ICs and BCs corresponding to various inhomogeneous flows: Captures the combined effects of advective and molecular transport.
 - *Stochastic iterated maps*: capture the multiscale dynamics of the advection-dominated (inertial) subrange of homogeneous turbulence.

- It incorporates widely used *mixing-length phenomenology*.
Unlike other 1D (and 3D) approaches, ODT does not involve averaging

Exact equations of motion (Navier-Stokes equation, scalar transport equation):

\[u_t + u \cdot \nabla u = \nu \nabla^2 u - \left(\frac{1}{\rho} \right) \nabla p \]
\[\theta_t + u \cdot \nabla \theta = \kappa \nabla^2 \theta \]

To obtain a turbulence model in 1D, apply the \textit{boundary-layer approximation} and either

- replace \(\nu \) and \(\kappa \) by \(\nu_e \) and \(\kappa_e \) (conventional; represents advection by diffusion)
- or
- replace \(u \cdot \nabla \) by a different advection process (approach used here)

\textbf{Simple example:}

For constant-property time-developing flow, obtain the following \textbf{alternative modeling frameworks} for the \textit{lateral (y) profile of streamwise velocity} \(u \):

\begin{align*}
 u_t &= \nu_e(y,t) \\
 u_yy &= \nu \frac{\partial^2 u}{\partial y^2} + \text{‘advection’} \\
 \theta_t &= \kappa_e(y,t) \theta \\
 \theta_{yy} &= \kappa \frac{\partial^2 \theta}{\partial y^2} + \text{‘advection’} \\
 \text{Pr}_e \ (\text{or Sc}_e) &= \frac{\nu_e(y,t)}{\kappa_e(y,t)} \\
 \text{Pr} \ (\text{or Sc}) &= \frac{\nu}{\kappa}
\end{align*}

\textit{neither framework is complete as written}
ODT involves an explicit representation of turbulent eddies

On a 1D domain, molecular evolution based on a boundary layer formulation is supplemented by an ‘eddy process,’ e.g.,

\[u_t = \nu \frac{\partial^2 u}{\partial y^2} + \text{eddies} \]

To specify the eddy process, need

- Definition of an eddy (biography)
- Eddy selection procedure (demography)
The 1D turbulent ‘eddy’ amplifies shear; feedback induces an eddy cascade

- The key to model performance is the eddy selection procedure
- Eddy likelihood, in a random sampling procedure, is governed by local shear
- When an eddy occurs, the local shear is amplified, which modifies eddy likelihoods

High shear at small scales drives small eddies, leading to an eddy cascade

"triplet map"
ODT simulations provide detailed flow-specific representations of turbulence

- Each vertical line shows the spatial extent of an eddy
- Horizontal location is its time of occurrence

These time-developing simulations are based on the evolution equation shown earlier, with flow-specific initial conditions (step-function and top-hat u profile, respectively), plus eddies
Eddy selection procedure

- Assign a time scale τ to each possible eddy, parameterized by eddy size and location within the computational domain.

- The set of τ values defines an eddy rate distribution λ from which eddies are sampled.

The physics is in the determination of τ (analogous to mixing-length theory)
Determination of τ in ODT (schematic)

Principle: Enforce consistency of eddies and flow (velocity and density profiles)

Eddy: Eddy velocity $\sim l/\tau$ so eddy energy $\sim \rho l^3/\tau^2$ ($l =$ eddy size)

Flow: $P =$ gravitational potential energy change caused by eddy

$K =$ maximum kinetic energy extractable by adding *wavelets* to velocity components

Relation determining τ:

$$\frac{\rho l^3}{\tau^2} = A \left(K - P - Z \frac{\mu^2}{\rho l} \right)$$

adjustable parameters

viscous penalty (imposes a threshold Reynolds number)
An eddy event consists of a triplet map followed by velocity profile changes.

The dynamic step implements:
- Energy conversion (kinetic, potential, etc.)
- Pressure scrambling (‘return to isotropy’)

Kinematic step:
- Triplet map is applied to all properties (velocities u, v, w and scalar, c)

Dynamic step affects velocities but not scalar
This approach is much like conventional mixing length theory

but

- The concept is applied to all l values, not to a single l value

- K and P are computed using the instantaneous state, not an average state

- Concurrent eddy and molecular processes are strongly coupled, thereby linking eddy dynamics to the flow configuration (ICs, BCs, body forces, fluid properties, etc.)
Outline of presentation

- Introduction to semi-super-parameterization

- Sub-structure model
 - Formulation
 - Illustrative applications

- Features of semi-super-parameterization
One-Dimensional Turbulence (ODT) captures fundamental turbulence properties

Homogeneous turbulence:

- Power spectra
 - Inertial and dissipative subrange scalings (Kolmogorov)
 - Pr-dependent passive-scalar subrange scalings (Batchelor, etc.)
 - Buoyancy-driven scalar spectrum (Bolgiano-Obukhov)

- Decay of grid turbulence

- Scalar mixing (variance decay, PDF evolution)

- Clustering of low-Stokes-number particles (or droplets)

Inhomogeneous turbulence:

Representative examples are considered
Rayleigh-Benard convection is a simple flow configuration with complicated behaviors.

- **Parameters:**
 - Ra: buoyant forcing scaled by viscous damping
 - Pr: viscosity scaled by thermal diffusivity

- **Measured properties:**
 - Nu: mean heat flux scaled by heat flux in motionless fluid
 - Temperature and velocity fluctuations (variance, PDF)

- **Classical analysis** (Priestley):
 - Near-wall flow unaffected by opposite wall
 - Implication: $Nu \sim Ra^{1/3}$

- **Observation:** Scaling exponent depends on Ra and Pr
Nonclassical scaling implies wall interactions

Two possible mechanisms:

- Coupling via the mean density gradient in the central region
- Large scale motions

Large buoyant plumes and large scale circulation are seen in experiments
Simulated Rayleigh-Benard density profile for $Ra = 1.4 \times 10^9$, $Pr = 0.7$
Other models need many parameters to fit $\text{Nu}(\text{Ra},\text{Pr})$ and say little about fluctuations

ODT application to Rayleigh-Benard convection:

- Adjust two parameters to fit $\text{Nu}(\text{Ra},\text{Pr})$
- Predict fluctuations
Computed midplane density fluctuations match Pr = 0.7 data (curve) and predict Pr trend.
and velocity PDFs match measurements

PDF of Temperature Fluctuations

PDF of Velocity Fluctuations

Measurements (Daya and Ecke 2002):
- , cylindrical cell;
- , rectangular cell

ODT: solid lines
Gaussian: dashed line

Ra=2x10^9
Pr=5.5
ODT is being used to study various environmental stratified-flow phenomena

- Penetrative convection
- Shear driven and convectively driven entrainment at stable density interfaces
- Stratified boundary layers
- Layering in stably stratified flow
- Mixing-induced buoyancy reversal
- Plume dispersal
- Mixing-controlled droplet growth in clouds
- Nuclear burning coupled to convection (supernovae)
- Multicomponent convection:
 - semiconvection (stars)
 - thermohaline staircase (oceans)
Eddy-viscosity closure within ODT enables atmospheric flow simulations

- An instantaneous vertical (z) profile of horizontal velocity (U) is shown.
- Simulation corresponds to stably stratified conditions (surface cooling: GABLS inter-comparison case).
- 16000 computational cells, resolving 2.5 cm (roughness height).
- Approximately 100 eddy events / sec.
- TKE budget resembles LES (Kosovic and Curry 2000, Cuxart et al. 2005).
A particle-eddy interaction couples entrained particles to fluid motion

- In ODT, motion and velocity are distinct, though dynamically consistent
- Particles respond, via drag law, to motion (in ODT, eddy events)
- Because ODT eddies are instantaneous
 - an internal (eddy) time coordinate for particle-eddy interaction is introduced
 - this involves another free parameter, relating the interaction time to τ

- Eddy-time integration determines a trajectory ‘jump condition’ representing the eddy-induced trajectory change, but not double-counting future motion
- Ballistic motion remains linear
- Zero-inertia (no-slip) particles follow the fluid
- Particle-fluid relative motion is realistic, though absolute motion is discontinuous
This approach provides a unified treatment of particle deposition regimes

Wall deposition in turbulent channel flow
(based on one-way coupling)

Dependence on Stokes number

Time variation of deposition rate
(transient relaxation)
Early deposition is ballistic, late deposition is Stokes-number dependent

Disclaimer: DNS and LES results could be accurate long-time results; the true onset of the high-inertia asymptote might occur at larger Stokes number than predicted by ODT
Outline of presentation

- Introduction to semi-super-parameterization
- Sub-structure model
 - Formulation
 - Illustrative applications
- Features of semi-super-parameterization
Concept: 3D compressible turbulence simulation based on evolution on coupled ODT domains

- Along each domain:
 - 1D gas dynamics
 - ODT eddy events

- Lateral coupling of adjacent domains is based on fluxes in domains oriented in the direction of coupling

- This formulation:
 - Obey applicable conservation laws
 - Reduces to DNS for flows resolved at scale M

ODT evolution on the horizontal domain determines fluxes that laterally couple the vertical domains across a common face

(Rod Schmidt will present an incompressible formulation)
With eddy-viscosity closure instead of ODT, this reduces to a conventional approach.

- With eddy-viscosity subgrid-scale momentum closure instead of ODT, this becomes an alternating-direction advancement scheme for large-eddy simulation (LES) without 1D substructure.

- Apart from the additional spatial and temporal resolution of micro-scale processes that ODT provides, the roles of ODT and eddy viscosity with regard to impact on large-scale flow are analogous.
Conclusions

- A new turbulent flow simulation approach, formulated in 1D but applicable in a 3D framework, provides a unified representation of processes at all scales.

- This motivates the concept of semi-super-parameterization.

- The performance of the 1D formulation indicates that the mixing-length concept, applied locally (in space and time), is a sound basis for modeling turbulence flow processes at all scales.
Backup slides follow
The **triplet map** is a 1D procedure that emulates 3D eddy kinematics.

The triplet map captures compressive strain and rotational folding effects, and causes no property discontinuities.

This procedure emulates the effect of a 3D eddy on property profiles along a line of sight.

The triplet map is implemented numerically as a permutation of fluid cells.